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Energy minimization studies were carried out for a number of Cu clusters using binary and
Gray-coded genetic algorithms along with real coded differential evolution, and their optimized
ground state geometries are presented. The potential energy function is constructed using a
two-body interaction methodology, involving both attractive and repulsive pair-potential terms.
The results obtained through the evolutionary algorithms are compared against those obtained
earlier using a Monte Carlo technique.

1. Introduction
Genetic algorithms (GAs) tend to mimic several biologi-

cal processes in the realm of function optimization.[1-5]

Their usage in determining the ground state configuration of
various clusters and molecules is becoming increasingly
successful and popular.[6-15] In their most common forms,
the GAs use a binary representation of variables, and the
emulated genetic operators, crossover, and mutation, for
example, are made to act on it. As elaborated in our earlier
work,[7] this binary representation often suffers from the
so-called Hamming Cliff problem. The Hamming distance
indicates the number of bits that are different between two
binary strings. In a Hamming Cliff situation, a very large
perturbation in binary space would cause only a small
change in integer space. For example, the decoded value of
the binary string 01 111 111 is 127 in the integer space,
while the string 10 000 000, which is at a large Hamming
distance apart, since all of its corresponding bits are differ-
ent from the previous one, decodes as 128, the next integer.
In such a situation, the usual binary representation is often
pushed to the limits of its efficacy, and the GAs tend to
become stagnant. The real coded differential evolution
(DE),[16] as demonstrated earlier,[7] becomes quite handy in
a situation like this. Another option is to use the phenotype
operation of creep mutation, where the binary strings are
mapped back to the real space, perturbed slightly, and re-
converted back to binary. In this study, along with those two
procedures, we have experimented with another option, the
so-called Gray Coding[1-2] of the binary variables. We ap-
plied our methodology on a number of copper clusters and
compared the present results with our earlier investigations
conducted through Monte Carlo simulation and other meth-
ods,[17-18] in which the success of an evolutionary approach
became quite apparent.

The details of binary GAs and DE are provided in our

earlier papers[3,5-8,12] and are not repeated here. We begin
with a brief overview of the Gray Coding technique.

2. The Elements of Gray Coding

Gray coding ingeniously uses the Exclusive OR (XOR)
operator between the binary bits. The XOR differs from the
more conventional OR operator, as shown in Table 1 using
two logical variables, � and �, both of which could be either
TRUE or FALSE and thus could be assigned a bit value of
either 1 or 0. It is evident from Table 1 that the OR opera-
tion returns a TRUE value when any one, or both the op-
erands, � and �, are TRUE. However, in order for an XOR
operation to return a TRUE value, one of the operands
necessarily has to be TRUE, while the other one needs to
remain FALSE.

To convert a binary string, say 10 000 to its Gray equiva-
lent, the first step is to transfer the leftmost bit in the binary,
1 in the present case, unchanged to the same location in the
Gray representation. The resultant of an XOR operation
between the next bit in the binary and its left-hand side
neighbor fills its corresponding position in the Gray string,
and the XOR operation continues till all the bit locations are
filled up. The binary number 10000 thus translates into
11000 in Gray encoding, and the Gray encoded GAs would
use the number as such. The major attraction of the Gray
encoding is its unique property that any two adjacent inte-
gers, if Gray coded, will have only one corresponding bit
different from each other. The Hamming Distance between
any two adjacent Gray coded integers is therefore always
unity, and this reduces the possibility of getting stranded in
a Hamming Cliff, which is quite commonplace in the ordi-
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Table 1 Truth Table for OR and XOR Operators

� � � OR � � XOR �

1 1 1 0
0 0 0 0
1 0 1 1
0 1 1 1
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nary binary coded GAs. In this study Gray coding worked
quite satisfactorily for the clusters on which it was tried. The
details of the energy calculations are provided below.

3. The Energy Functional

The potential energy functional (PEF) used in the calcu-
lations describes the total interaction energy (�) of a system
of N particles and is defined as

� = D21�21 + D22�22 (Eq 1)

where �21 and �22 are total two-body interaction energies.
The parameters D21 and D22 contain the contribution of
many-body interactions other than the pair-interactions and
were determined using bulk cohesive energy and bulk sta-
bility condition, as detailed elsewhere.[17]

The two-body interaction energy terms were calculat-
ed as

�2k = �
i�j

U ij
2k k�1,2 (Eq 2)

Table 2 PEF Parameters

Parameter Value

A1 110.766008
�1 2.09045946
�1 0.394142248
A2 −46.1649783
�2 1.49853083
�2 0.207225507
D21 0.436092895
D22 0.245082238

Fig. 1 Ground state configurations of Cu clusters
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where k = 1 is for repulsive interactions only and k = 2 is
for attractive interactions only. The explicit form of Uij

2k is
taken as

Uij
2k = Akrij

−�ke−�krij
2

k = 1,2 (Eq 3)

where rij denotes the interatomic distance, and Ak, �k , and
�k are the three parameters for two-body interaction, as
discussed earlier.[17]

Furthermore, an exact pair potential (this is not exact
energy) Uij was defined as

Uij = Uij
21 + Uij

22 (Eq 4)

It should be noted here that Uij describes the interaction
potential between two atoms only, containing both repulsive
and attractive interactions. However, it is also possible to
define Uij

eff, an effective pair-potential such that

Uij
eff = D21Uij

21 + D22Uij
22 (Eq 5)

The total interaction energy based upon the effective pair
potentials can be also calculated as

� = �
i�j

U ij
eff (Eq 6)

The various parameters used for the PEF are shown in
Table 2. In these parameters the energy is in eV and the
distance is in Å. Further details are provided else-
where.[17,18]

4. Computational

The calculations reported in this study were performed in
a PARAM 10 000 computer located at the campus of Indian
Institute of Technology, Kharagpur. This is a 6.4 giga flop
parallel machine, scalable up to tera flop range, developed
by C-DAC, India, and operates under a UNIX type envi-
ronment. We have developed our own C code tailor-made
for this problem.

The mutation constant[7,16] for the DE runs required

Table 3 Calculated Cluster Energies for the Ground State Configurations

Number of
Atoms

Energy, Genetic Algorithm
Without Gray

Coding, eV

Energy, Genetic
Algorithm Using
Gray Coding, eV

Energy,
Differential

Evolution, eV

Energy,
Monte Carlo

Calculations18, eV

3 −0.6677 −0.6677 −0.6677 −0.6678
4 −1.3354 … −1.3355 −1.3352
5 … … −2.0220 −2.0215
6 … … −2.8529 −2.8524
7 … −3.6566 −3.6566 −3.6561
8 −4.4283 −4.4286 −4.4286 −4.4280
9 −5.3187 … −5.3187 −5.3186

10 … … −6.2668 −6.2660
11 −7.2205 7.2205 −7.2205 −7.2262

Fig. 2 Variation of energy per atom with cluster size
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gradual adjustments between 0.01 and 4.2, while the corre-
sponding crossover probabilities were adjusted in the range
of 0.8-0.3. For the binary and Gray coded genetic algo-
rithms both the jump and creep mutation were used, often in
tandem. When gray coding was not used, the probabilities
for each type of mutation were varied between 0 and 0.005.
Along with Gray coding, the bit mutation probability was

varied between 0 and 0.001, while the creep mutation prob-
ability was adjusted between 0 and 0.003. Only single-point
crossover operation was conducted in both the cases. When
used with gray coding, the crossover probability was
kept within 0.7-0.85. The corresponding range was from
0.6 to 0.8 when Gray coding was not used. The time
required for convergence varied from cluster to cluster. We

Fig. 3 Evaluation of the ground state structure using various algorithms
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usually continued our calculations for several genera-
tions after the apparent convergence, with varying cross-
over and mutation, so that the stability of the observed
configuration could be established beyond any reasonable
doubts. Thus, for the clusters like Cu10 we continued our
calculations up to 178 000 generations, while the optimized
geometry of Cu5 was obtained easily within 2000 genera-
tions.

5. Results and Discussion

The optimized geometries of the ground state clusters
computed in this study are shown in Fig. 1. A 5-fold sym-
metry was observed in all the clusters containing more than
seven atoms. DE was used for computing all the clusters,
while the binary and Gray coded genetic algorithms were
tried out for some select clusters. The minimized energy
values are shown in Table 3, and Fig. 2 shows the variation
of energy per atom with the cluster size.

The results are in excellent agreement with the earlier
studies[17-18] where a Monte Carlo technique was used in a
simulated annealing[19] type of environment. This involves
a tedious point-by-point search, by means of a random walk,
and GA, in all its variants, performs better than that by
efficiently recombining global information in the search
space through its crossover operator and continuously per-
forming a local search through mutation.

Among the three evolutionary algorithms used in this
study, DE, in general, provided the fastest convergence.
However, as it is a greedy scheme, with an explicit bias
towards the best offspring, DE sometimes runs into the
problem of losing the diversity of the population, which, in
turn, leads to a premature convergence. In this study we
were able to overcome this problem through a careful ad-
justment of the mutation constant in the ranges mentioned
before.

Each evolutionary algorithm takes it own pathway to
converge, as shown in Fig. 3, where each structure denotes
the lowest energy configuration at a particular generation
for the corresponding algorithm. Unlike one of the Monte
Carlo strategies tried out earlier,[18] in which one atom was
randomly added to a previously optimized structure, GAs
rely heavily upon the randomness of the initial population,
and the nature of the intermediate assemblages, thus, may
vary from run to run, even for the same variety of the
evolutionary technique. It is also worth mentioning at this
point that for the system in hand, a large distortion in the
lattice is often associated with a small change in the energy;
the configurations obtained with and without gray coding
after 600 generations (Fig. 3) bear ample evidence of that.
This possibly reflects the multi-modal nature of the energy
functional. Multi-modality can indeed lead to a false con-
vergence in a local minimum unless adequate precautions
are taken. In genetic algorithms, the dual action of crossover
and mutation provides an implicit safeguard against this
problem by simultaneously performing a global and a local
search, as indicated before. However, its efficacy is very
sensitive to the proper choice of the genetic parameters,
which, as in our previous efforts in this area,[6-9] have re-
quired a quite tedious trial and error effort.

6. Concluding Remarks

Several studies in recent years have addressed the cluster
and molecular geometry optimization problems associated
with GAs.[6-15] The need for designing new materials and
the requirements of basic understanding for processes like
chemisorption and catalysis, as in the present work, have
been the major driving force behind many such research
efforts. The nature of genetic algorithms used in those stud-
ies, however, varied widely, ranging from a rather simplistic
cut and paste to state-of-the-art binary and real coded imple-
mentations. The Gray and real coded methodology demon-
strated in this study can straighten out many problems as-
sociated with such simulations, but possibly not all. For
example, we are aware that the strategy that we have been
following in our recent works[6-9] cannot prevent multiple
occurrences of the same structures with different coordi-
nates, as the atoms are allowed to translate and rotate freely.
Furthermore, for problems of this nature, our experience
suggests that most genetic algorithms tend to reach a near
optimal state rather quickly and then they slow down con-
siderably, sometimes rendering the fine convergence an un-
acceptably tedious process. However, the time to reach a
near optimal region varies from cluster to cluster, and is not
always directly correlated to the cluster size. In principle, it
may be a better option to use a hybrid scheme that would
rely upon a gradient-based method for the final conver-
gence, once the genetic algorithms bring the solution to a
near optimal level. All such options need to be meticulously
tried out, and for that purpose, calculating the same clusters
over again with variant evolutionary techniques, as we have
attempted here, appears to be an absolute necessity.
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